Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338779

RESUMO

The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI. For this purpose, we analyzed the expression of inflammatory mediators and the infiltration of different leukocyte populations into the kidney after injury, evaluated the expression of the putative synaptamide receptor G-protein-coupled receptor 110 (GPR110), and isolated a population of CD11b/c+ cells mainly representing neutrophils and macrophages using cell sorting. We also evaluated the severity of AKI during synaptamide therapy and the serum metabolic profile. We demonstrated that synaptamide reduced the level of pro-inflammatory interleukins and the expression of integrin CD11a in kidney tissue after injury. We found that the administration of synaptamide increased the expression of its receptor GPR110 in both total kidney tissue and renal CD11b/c+ cells that was associated with the reduced production of pro-inflammatory interleukins in these cells. Thus, we demonstrated that synaptamide therapy mitigates the inflammatory response in kidney tissue during ischemic AKI, which can be achieved through GPR110 signaling in neutrophils and a reduction in these cells' pro-inflammatory interleukin production.


Assuntos
Injúria Renal Aguda , Etanolaminas , Receptores Acoplados a Proteínas G , Traumatismo por Reperfusão , Animais , Ratos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Anti-Inflamatórios/metabolismo , Interleucinas/metabolismo , Rim/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
2.
Metabolites ; 13(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887413

RESUMO

The Animal Metabolite Database (AMDB, https://amdb.online) is a freely accessible database with built-in statistical analysis tools, allowing one to browse and compare quantitative metabolomics data and raw NMR and MS data, as well as sample metadata, with a focus on the metabolite concentrations rather than on the raw data itself. AMDB also functions as a platform for the metabolomics community, providing convenient deposition and exchange of quantitative metabolomic data. To date, the majority of the data in AMDB relate to the metabolite content of the eye lens and blood of vertebrates, primarily wild species from Siberia, Russia and laboratory rodents. However, data on other tissues (muscle, heart, liver, brain, and more) are also present, and the list of species and tissues is constantly growing. Typically, every sample in AMDB contains concentrations of 60-90 of the most abundant metabolites, provided in nanomoles per gram of wet tissue weight (nmol/g). We believe that AMDB will become a widely used tool in the community, as typical metabolite baseline concentrations in tissues of animal models will aid in a wide variety of fundamental and applied scientific fields, including, but not limited to, animal modeling of human diseases, assessment of medical formulations, and evolutionary and environmental studies.

3.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764316

RESUMO

A series of cyclometalated complexes of ruthenium (II) with four different substituents in the aryl fragment of benzimidazole was synthesized in order to study the effect of substituent donation on the electronic structure of the substances. The resulting complexes were studied using X-ray diffraction, NMR spectroscopy, MALDI mass spectrometry, electron absorption spectroscopy, luminescence spectroscopy, and cyclic voltammetry as well as DFT/TDDFT was also used to interpret the results. All the complexes have intense absorption in the range of up to 700 nm, the triplet nature of the excited state was confirmed by measurement of luminescence decay. With an increase in substituent donation, a red shift of the absorption and emission bands occurs, and the lifetime of the excited state and the redox potential of the complex decrease. The combination of these properties shows that the complexes are excellent dyes and can be used as photosensitizers.

4.
Pharmaceuticals (Basel) ; 16(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37242469

RESUMO

The predominant route of administration of drugs with coenzyme Q10 (CoQ10) is administration per os. The bioavailability of CoQ10 is about 2-3%. Prolonged use of CoQ10 to achieve pharmacological effects contributes to the creation of elevated concentrations of CoQ10 in the intestinal lumen. CoQ10 can have an effect on the gut microbiota and the levels of biomarkers it produces. CoQ10 at a dose of 30 mg/kg/day was administered per os to Wistar rats for 21 days. The levels of gut microbiota biomarkers (hydrogen, methane, short-chain fatty acids (SCFA), and trimethylamine (TMA)) and taxonomic composition were measured twice: before the administration of CoQ10 and at the end of the experiment. Hydrogen and methane levels were measured using the fasting lactulose breath test, fecal and blood SCFA and fecal TMA concentrations were determined by NMR, and 16S sequencing was used to analyze the taxonomic composition. Administration of CoQ10 for 21 days resulted in a 1.83-fold (p = 0.02) increase in hydrogen concentration in the total air sample (exhaled air + flatus), a 63% (p = 0.02) increase in the total concentration of SCFA (acetate, propionate, butyrate) in feces, a 126% increase in butyrate (p = 0.04), a 6.56-fold (p = 0.03) decrease in TMA levels, a 2.4-fold increase in relative abundance of Ruminococcus and Lachnospiraceae AC 2044 group by 7.5 times and a 2.8-fold decrease in relative representation of Helicobacter. The mechanism of antioxidant effect of orally administered CoQ10 can include modification of the taxonomic composition of the gut microbiota and increased generation of molecular hydrogen, which is antioxidant by itself. The evoked increase in the level of butyric acid can be followed by protection of the gut barrier function.

5.
Biochimie ; 204: 136-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174793

RESUMO

Mitoregulin (Mtln) is a recently identified 56 amino acid long mitochondrial peptide conserved in vertebrates. Mtln is known to enhance function of respiratory complex I, which is likely mediated by modulation of lipid composition. To address an influence of Mtln gene on the metabolism we created knockout mice deficient in Mtln gene. In line with accumulation of triglycerides observed earlier on a model of Mtln knockout cell lines, we observed Mtln KO mice to develop obesity on a high fat diet. An increased weight gain could be attributed to enhanced fat accumulation according to the magnetic resonance live imaging. In addition, Mtln KO mice demonstrate elevated serum triglycerides and other oxidation substrates accompanied by an exhaustion of tricarboxylic acids cycle intermediates, suggesting suboptimal oxidation of respiration substrates by mitochondria lacking Mtln.


Assuntos
Mitocôndrias , Aumento de Peso , Camundongos , Animais , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Triglicerídeos/metabolismo , Camundongos Knockout , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Metabolismo dos Lipídeos
6.
Front Mol Biosci ; 9: 865743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782865

RESUMO

Williams-Beuren syndrome (WBS) is a genetic disorder associated with the hemizygous deletion of several genes in chromosome 7, encoding 26 proteins. Malfunction of these proteins induce multisystemic failure in an organism. While biological functions of most proteins are more or less established, the one of methyltransferase WBSCR27 remains elusive. To find the substrate of methylation catalyzed by WBSCR27 we constructed mouse cell lines with a Wbscr27 gene knockout and studied the obtained cells using several molecular biology and mass spectrometry techniques. We attempted to pinpoint the methylation target among the RNAs and proteins, but in all cases neither a direct substrate has been identified nor the protein partners have been detected. To reveal the nature of the putative methylation substrate we determined the solution structure and studied the conformational dynamic properties of WBSCR27 in apo state and in complex with S-adenosyl-L-homocysteine (SAH). The protein core was found to form a canonical Rossman fold common for Class I methyltransferases. N-terminus of the protein and the ß6-ß7 loop were disordered in apo-form, but binding of SAH induced the transition of these fragments to a well-formed substrate binding site. Analyzing the structure of this binding site allows us to suggest potential substrates of WBSCR27 methylation to be probed in further research.

7.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682734

RESUMO

Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15-/- mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15-/- mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15-/- mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15-/- knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15-/- knockout mice a suitable model for mild mitochondriopathies.


Assuntos
Mitocôndrias , Ribossomos Mitocondriais , Animais , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA
8.
Dalton Trans ; 49(46): 16935-16945, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33188375

RESUMO

Cyclometalated Ru(ii) complexes with 2-arylbenzimidazole antenna ligands bearing electron-donor/withdrawing substituents and anchoring 4,4'-dimethoxycarbonyl-2,2'-bipyridine have been prepared and their structure, optical and electrochemical properties have been studied. The complexes possess enhanced light-harvesting characteristics compared to those of the standard N719 dye and absorb light up to 750 nm. In addition, they demonstrate reversible redox behavior with Ru3+/Ru2+ potentials being finely tuned by the change of the electron-donating ability of cyclometalated ligands. After a mild hydrolysis of dimethoxycarbonyl groups the excellent optical properties of the complexes remain unchanged and they show good efficiency when tested in dye-sensitized solar cells.

9.
Sci Rep ; 10(1): 11109, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632130

RESUMO

Telomerase is a ribonucleoprotein enzyme, which maintains genome integrity in eukaryotes and ensures continuous cellular proliferation. Telomerase holoenzyme from the thermotolerant yeast Hansenula polymorpha, in addition to the catalytic subunit (TERT) and telomerase RNA (TER), contains accessory proteins Est1 and Est3, which are essential for in vivo telomerase function. Here we report the high-resolution structure of Est3 from Hansenula polymorpha (HpEst3) in solution, as well as the characterization of its functional relationships with other components of telomerase. The overall structure of HpEst3 is similar to that of Est3 from Saccharomyces cerevisiae and human TPP1. We have shown that telomerase activity in H. polymorpha relies on both Est3 and Est1 proteins in a functionally symmetrical manner. The absence of either Est3 or Est1 prevents formation of a stable ribonucleoprotein complex, weakens binding of a second protein to TER, and decreases the amount of cellular TERT, presumably due to the destabilization of telomerase RNP. NMR probing has shown no direct in vitro interactions of free Est3 either with the N-terminal domain of TERT or with DNA or RNA fragments mimicking the probable telomerase environment. Our findings corroborate the idea that telomerase possesses the evolutionarily variable functionality within the conservative structural context.


Assuntos
Proteínas Fúngicas/química , Pichia/metabolismo , RNA/química , Proteínas de Saccharomyces cerevisiae/química , Telomerase/metabolismo , Domínio Catalítico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/genética , Ligação Proteica , Conformação Proteica , RNA/genética , RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Telomerase/química , Telomerase/genética , Proteínas de Ligação a Telômeros
10.
Biomol NMR Assign ; 14(2): 281-287, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562252

RESUMO

Family I soluble inorganic pyrophosphatases (PPases; EC 3.6.1.1) are enzymes essential for all organisms. They hydrolyze inorganic pyrophosphate, thus providing the driving force for numerous biosynthetic reactions. Soluble PPases retain enzymatic activity only in multimeric forms. PPases from various organisms are extensively studied by X-ray crystallography but until now there was no information on their structure and dynamics in solution. Hexameric 110 kDa (6 × 18.3 kDa) PPase from Mycobacterium tuberculosis (Mt-PPase) is a promising target for the rational design of potential anti-tuberculosis agents. In order to use NMR techniques in functional studies of Mt-PPase and rational design of the inhibitors for this enzyme, it is necessary to have information on the backbone 1H, 13C and 15N resonance assignments. Samples of Mt-PPase enriched with 99% of 13C and 15N isotopes, and 95% of 2H were obtained using recombinant protein expression in an isotopically-labeled medium and effective heat-shock protocol for the deuterium-to-hydrogen exchange of the amide groups. Backbone resonance assignment was achieved for more than 95% of the residues. It was found that the secondary structure of Mt-PPase in solution corresponds well to the crystal structure of this protein. Protein backbone dynamics were studied using 15N NMR relaxation experiments. Determined resonance assignments and dynamic properties provide the basis for the subsequent structure-based design of novel inhibitors of Mt-PPase-potential anti-tuberculosis drugs.


Assuntos
Pirofosfatase Inorgânica/análise , Mycobacterium tuberculosis/enzimologia , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Pirofosfatase Inorgânica/química , Peso Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Soluções
11.
FEBS J ; 287(24): 5375-5393, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32255258

RESUMO

Williams-Beuren syndrome, characterized by numerous physiological and mental problems, is caused by the heterozygous deletion of chromosome region 7q11.23, which results in the disappearance of 26 protein-coding genes. Protein WBSCR27 is a product of one of these genes whose biological function has not yet been established and for which structural information has been absent until now. Using NMR, we investigated the structural and functional properties of murine WBSCR27. For protein in the apo form and in a complex with S-(5'-adenosyl)-l-homocysteine (SAH), a complete NMR resonance assignment has been obtained and the secondary structure has been determined. This information allows us to attribute WBSCR27 to Class I methyltransferases. The interaction of WBSCR27 with the cofactor S-(5'-adenosyl)-l-methionine (SAM) and its metabolic products - SAH, 5'-deoxy-5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5'dAdo) - was studied by NMR and isothermal titration calorimetry. SAH binds WBSCR27 much tighter than SAM, leaving open the question of cofactor turnover in the methylation reaction. One possible answer to this question is the presence of weak but detectable nucleosidase activity for WBSCR27. We found that the enzyme catalyses the cleavage of the adenine moiety from SAH, MTA and 5'dAdo, similar to the action of bacterial SAH/MTA nucleosidases. We also found that the binding of SAM or SAH causes a significant change in the structure of WBSCR27 and in the conformational mobility of the protein fragments, which can be attributed to the substrate recognition site. This indicates that the binding of the cofactor modulates the folding of the substrate-recognizing region of the enzyme.


Assuntos
Desoxiadenosinas/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Tionucleosídeos/metabolismo , Animais , Apoenzimas , Camundongos , Conformação Proteica
12.
ACS Omega ; 5(15): 8579-8586, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337420

RESUMO

The present work is focused on testing enzyme-based agents for the partial dissolution of calcium pyrophosphate (CaPPi) deposits in the cartilages and synovial fluid of patients with pyrophosphate arthropathy (CPPD disease). Previously, we suggested that inorganic pyrophosphatases (PPases) immobilized on nanodiamonds of detonation synthesis (NDs) could be appropriate for this purpose. We synthesized and characterized conjugates of NDs and PPases from Escherichia coli and Mycobacterium tuberculosis. The conjugates showed high enzymatic activity and resistance to inhibition by calcium and fluoride. Here, we tested the effectiveness of pyrophosphate (PPi) hydrolysis by the conjugates in an in vitro model system simulating the ionic composition of the synovial fluid and in the samples of synovial fluid of patients with CPPD via NMR spectroscopy. The conjugates of both PPases efficiently hydrolyzed triclinic crystalline calcium pyrophosphate (t-CPPD) in the model system. We evaluated the number of phosphorus-containing compounds in the synovial fluid, showed the possibility of PPi detection in it, and estimated the hydrolytic activity of the PPase conjugates. The soluble and immobilized PPases were able to hydrolyze a significant amount of PPi (1 mM) in the synovial fluid in short periods of time (24 h). The maximum activity was demonstrated for Mt-PPase immobilized on ND-NH-(CH2)6-NH2 (2.24 U mg-1).

13.
Biomol NMR Assign ; 12(2): 303-308, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29868988

RESUMO

Williams-Beuren syndrome is a genetic disorder characterized by physiological and mental abnormalities, and is caused by hemizygous deletion of several genes in chromosome 7. One of the removed genes encodes the WBSCR27 protein. Bioinformatic analysis of the sequence of WBSCR27 indicates that it belongs to the family of SAM-dependent methyltransferases. However, exact cellular functions of this protein or phenotypic consequences of its deficiency are still unknown. Here we report nearly complete 1H, 15N, and 13C chemical shifts assignments of the 26 kDa WBSCR27 protein from Mus musculus in complex with the cofactor S-adenosyl-L-methionine (SAM). Analysis of the assigned chemical shifts allowed us to characterize the protein's secondary structure and backbone dynamics. The topology of the protein's fold confirms the assumption that the WBSCR27 protein belongs to the family of class I methyltransferases.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Síndrome de Williams/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Camundongos , S-Adenosilmetionina/metabolismo
14.
Biomol NMR Assign ; 12(1): 57-62, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28916982

RESUMO

Telomerase is a multisubunit ribonucleoprotein enzyme that is essential for continuous cellular proliferation. A key role of telomerase in cancer and ageing makes it a promising target for the development of cancer therapies and treatments of other age-associated diseases, since telomerase allows unlimited proliferation potential of cells in the majority of cancer types. However, the structure and molecular mechanism of telomerase action are still poorly understood. In budding yeast, telomerase consists of the catalytic subunit, the telomerase reverse transcriptase or Est2 protein, telomerase RNA (TLC1) and two regulatory subunits, Est1 and Est3. Each of the four subunits is essential for in vivo telomerase function. Est3 interacts directly with Est1 and Est2, and stimulates Est2 catalytic activity. However, the exact role of the Est3 protein in telomerase function is still unknown. Determination of the structure, dynamic and functional properties of Est3 can bring new insights into the molecular mechanism of telomerase activity. Here we report nearly complete 1H, 13C and 15N resonance assignments of Est3 from the yeast Hansenula polymorpha. Analysis of the assigned chemical shifts allowed us to identify the protein's secondary structure and backbone dynamic properties. Structure-based sequence alignment revealed similarities in the structural organization of yeast Est3 and mammalian TPP1 proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Pichia/enzimologia , Subunidades Proteicas/química , Telomerase/química , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...